CT Lượng Giác +BDT

V

vovankhanh0147

Last edited by a moderator:
N

nguyenbahiep1

Câu 2: CM: [2/(a+b)] + [2/(b=c)] + [2/(a=c)] >= 9/(a+b+c)

[TEX]dk: a,b,c > 0 \\ \\ 2.(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}) \geq \frac{9}{a+b+c} \\ \\ (2a+2b+2c).(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}) \geq 9 \\ \\ (a+b+b+c+a+c).(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}) \geq 9 \\ \\ mat-khac : a+b + b+c + a+ c \geq 3.\sqrt[3]{(a+b)(b+c)(c+a)} \\ \\ \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c} \geq 3.\sqrt[3]{\frac{1}{a+b}.\frac{1}{b+c}.\frac{1}{a+c}} \\ \\ \Rightarrow (a+b+b+c+a+c).(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}) \geq 9 \Rightarrow dpcm[/TEX]
 
H

huytrandinh

câu 1 ta có
$sin^{2}x+cos^{2}x=1<=>cos^{4}x=(1-sin^{2}x)^{2}$
$=>3sin^{4}x+cos^{4}x=\dfrac{3}{4}$
$<=>3sin^{4}x+1-2sin^{2}x+sin^{4}x=\dfrac{3}{4}<=>sin^{2}x=\dfrac{1}{4}$
$=>sin^{4}x+3cos^{4}x=\dfrac{1}{4^{2}}+3(1-\dfrac{1}{4})^{2}=\dfrac{5}{8}$
 
Top Bottom