công thức lượng giác _ chứng minh và cm

A

astimula

Last edited by a moderator:
Y

yumi_26

$\dfrac{tan \ x + tan \ y}{tan \ (x+y)} - \dfrac{tan \ x - tan \ y}{tan \ (x-y)} \\ = \dfrac{tan \ x + tan \ y}{\dfrac{tan \ x + tan \ y}{1 - tan \ x.tan \ y}} - \dfrac{tan \ x - tan \ y}{\dfrac{tan \ x - tan \ y}{1 + tan \ x.tan \ y}} \\ = (1 - tan \ x.tan \ y) - (1 + tan \ x.tan \ y) = -2tan \ x.tan \ y$
 
Last edited by a moderator:
P

pe_lun_hp

$\dfrac{tanx + tany}{tan(x+y)} - \dfrac{tanx - tany}{tan(x-y)} = -2tanx.tany$

$VT = \dfrac{tanx + tany}{\dfrac{tanx + tany}{1 - tanx.tany}} - \dfrac{tanx - tany}{\dfrac{tanx - tany}{1 + tanx.tany}}$

$ = 1 - tanx.tany - 1 - tanx.tany = -2tanx.tany$ (đpcm) :D
 
T

thaoteen21

tl

sin^2 A + sin^2 B - sin^2 C = 2sinAsinBcosC
VT=$\dfrac{1-cos2A}{2}$+$\dfrac{1-cos2B}{2}$-$(1-cos^2C)$
=1-$\dfrac{1}{2}$.(cos2A+cos2B)-1+$cos^C$
=-$\dfrac{1}{2}$.$2.cosA+B.cosA-B+cos^2C$
=cosC.(cosC+cosA-B)
=-cosC.(-cosA+B+cosA-B)=2.cosA.sinA.sinB-->đpcm
thân...
 
Last edited by a moderator:
S

sieumau88

Cho tam giác ABC
CM: $sin^2A + sin^2B - sin^2C = 2.sinA.sinB.cosC$

VT = $\dfrac{1-cos2A + 1-cos2B}{2} - sin^2C$
= $\dfrac{ - (cos2A + cos2B)}{2} + 1 - sin^2C$
= $-cos(A+B).cos(A-B)+cos^2C$
= $-cos(\pi - C).cos(A-B)+cos^2C$

= $cosC$.[$cos(A-B)$ + $cosC$]
= $2.cosC.cos\dfrac{A-B+C}{2} cos\dfrac{A-B-C}{2}$

= $2 . cosC . cos\dfrac{\pi - 2B}{2} cos\dfrac{2A - \pi}{2}$
= 2.cosC.sinA.sinB= VP
\Rightarrow đẳng thức đc c/m :rolleyes:
 
Top Bottom