có ai cho lời giải với

T

tuyn

[TEX]I=\int\limits_0^{\frac{\pi }{4}} {\ln (c{\rm{osx}})} d{\rm{x}}[/TEX]
[TEX]J=\int\limits_0^{\frac{\pi }{4}} {\ln ({\rm s}\nolimits} {\rm{inx + }}c{\rm{osx}}) d{\rm{x}}[/TEX]
+) Đặt [TEX]t= \frac{ \pi}{4}-x \Rightarrow dx=-dt[/TEX]
[TEX]I= \int_{ \frac{ \pi}{4}}^{0} lncos( \frac{ \pi}{4}-t) (-dt)= \int_{0}^{ \frac{ \pi}{4}} [ \frac{1}{ \sqrt{2}} (cost+sint)dt[/TEX]
[TEX]=ln \frac{1}{ \sqrt{2}} \int_{0}^{ \frac{ \pi}{4}}dt+ \int_{0}^{ \frac{ \pi}{4}} ln(sinx+cosx)dx=- \frac{ \pi}{8}ln2+J[/TEX]
[TEX]\Leftrightarrow J-I= \frac{ \pi}{8}ln2(1)[/TEX]
+) [TEX]J=- \int_{0}^{ \frac{ \pi}{4}} ln[ \sqrt{2}cos( \frac{ \pi}{4}-x)]d( \frac{ \pi}{4}-x)= -ln \sqrt{2} \int_{0}^{ \frac{ \pi}{4}} dx-[/TEX]
P/S: em tham khảo nhé.Chưa ra đâu?
 
Top Bottom