cho tứ giác ABCD , gọi M,N là các điểm thuộc cạnh AD, BC sao cho [tex]\frac{MD}{MA}=\frac{NC}{NB}=2015[/tex] . CMR: vectơ MN = [tex]\frac{2015}{2016}[/tex] vectơ AB + [tex]\frac{1}{2016}[/tex] vectơ DC.
Từ giả thiết [tex]\Rightarrow \overrightarrow{AM}=\frac{1}{2016}\overrightarrow{AD} ; \ \overrightarrow{BN}=\frac{1}{2016}\overrightarrow{BC}[/tex]
[tex]\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{BN}=\frac{-1}{2016}\overrightarrow{AD}+\overrightarrow{AB}+\frac{1}{2016}\overrightarrow{BC}=\frac{-1}{2016}\left ( \overrightarrow{AB}+\overrightarrow{BD} \right )+\overrightarrow{AB}+\frac{1}{2016}\left ( \overrightarrow{BD} +\overrightarrow{DC}\right )=\frac{2015}{2016}\overrightarrow{AB}+\frac{1}{2016}\overrightarrow{DC}[/tex]