Cho a,b,c là các số thực dương.CMR:
[tex](\frac{a}{b} + \frac{b}{c}+ \frac{c}{a})^{2} \geq (a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})[/tex]
@Thiên Nhất Vũ Hoàng
[tex](\frac{a}{b} +\frac{b}{c}+\frac{c}{a})^{2} \geq (a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\Rightarrow ( \frac{a}{b})^{2} + (\frac{b}{c})^{2}+ (\frac{c}{a})^{2}+2\frac{a}{c}+2\frac{b}{a} +2\frac{c}{b}\geq 3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+ \frac{b}{c}+\frac{c}{a}+\frac{c}{b} \Rightarrow (\frac{a}{b})^{2} +(\frac{b}{c})^{2} +(\frac{c}{a})^{^{2}} +\frac{a}{b}+\frac{b}{a}+\frac{c}{b} \geq 3 +\frac{a}{b}+\frac{b}{c}+\frac{c}{a}[/tex]
Theo AM-GM có [tex]\frac{a}{c} +\frac{b}{a}+\frac{c}{b}\geq 3(1)[/tex]
[tex](\frac{a}{b})^{2}+1\geq 2\frac{a}{b} \Rightarrow (\frac{a}{b})^{2} \geq 2\frac{a}{b} -1[/tex] [tex](\frac{a}{b})^{2}+1\geq 2\frac{a}{b} \Rightarrow (\frac{a}{b})^{2} \geq 2\frac{a}{b} -1[/tex]
Tương tự [tex](\frac{b}{c})^{2}\geq 2\frac{a}{b}-1[/tex] và [tex](\frac{c}{a})^{2}\geq 2\frac{c}{a}-1[/tex]
[tex]\Rightarrow (\frac{a}{b})^{2} +(\frac{b}{c})^{2} +(\frac{c}{a})^{2}\geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+ ( \frac{a}{b}+ \frac{b}{c}+\frac{c}{a}-3)\geq \frac{a}{b} +\frac{b}{c}+\frac{c}{a} (2)[/tex]
Cộng từng vế (1) và (2) ta có đpcm .Dấu = xảy ra khi a=b=c