Toán 10 CMR: $ \frac{x}{\sqrt{y(z+2x)}}+\frac{y}{\sqrt{z(x+2y)}}+\frac{z}{\sqrt{x(y+2)}} \geq \sqrt{3} $

7 1 2 5

Cựu TMod Toán
Thành viên
19 Tháng một 2019
6,871
11,478
1,141
Hà Tĩnh
THPT Chuyên Hà Tĩnh
[tex]\frac{x}{\sqrt{3y(z+2x)}}+\frac{y}{\sqrt{3z(x+2y)}}+\frac{z}{\sqrt{3x(y+2)}} \geq \frac{2x}{2x+3y+z}+\frac{2y}{x+2y+3z}+\frac{2z}{3x+y+2z}=2(\frac{x^2}{2x^2+3xy+zx}+\frac{y^2}{xy+2y^2+3yz}+\frac{z^2}{3xz+yz+2z^2})\geq 2.\frac{(x+y+z)^2}{2x^2+2y^2+2z^2+4xy+4yz+4zx}=\frac{2(x+y+z)^2}{2(x+y+z)^2}=1\Rightarrow \frac{x}{\sqrt{y(z+2x)}}+\frac{y}{\sqrt{z(x+2y)}}+\frac{z}{\sqrt{x(y+2)}} \geq \sqrt{3}[/tex]
 
Top Bottom