Cmr : $a_1+a_2+a_3+....+a_{2009} \le 1$

1

1um1nhemtho1

có : $\frac{1}{(2n+1)(\sqrt[]{n}+\sqrt[]{n+1})} = \frac{\sqrt[]{n+1}-\sqrt[]{n}}{(2n+1)(\sqrt[]{n}+\sqrt[]{n+1})(\sqrt[]{n+1}-\sqrt[]{n})} = \frac{\sqrt[]{n+1}-\sqrt[]{n}}{(2n+1)(n+1-n)}= \frac{\sqrt[]{n+1}-\sqrt[]{n}}{2n+1}$.

Áp dụng BĐT cô-si cho 2 số không âm $n$ và $n+1$ ta có:

$n+(n+1) \ge 2\sqrt[]{n(n+1)}$ \Rightarrow $2n+1 \ge 2\sqrt[]{n(n+1)}$

\Rightarrow$ \frac{\sqrt[]{n+1}-\sqrt[]{n}}{2n+1} \le \frac{\sqrt[]{n+1}-\sqrt[]{n}}{2\sqrt[]{n(n+1)}}= \frac{1}{2}(\frac{1}{\sqrt[]{n}}-\frac{1}{\sqrt[]{n+1}})$

\Rightarrow $a_n=\frac{2}{(2n+1)(\sqrt[]{n}+\sqrt[]{n+1})} \le \frac{1}{\sqrt[]{n}}-\frac{1}{\sqrt[]{n+1}}$

\Rightarrow $a_1+a_2+...a_n \le 1- \frac{1}{\sqrt[]{n+1}} < 1$
 
Top Bottom