Đặt A= [tex]\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c} = \sqrt{\frac{3}{2}}(\sqrt{\frac{2}{3}}.\sqrt{a+b}+\sqrt{\frac{2}{3}}.\sqrt{b+c}+\sqrt{\frac{2}{3}}.\sqrt{a+c})[/tex]
Rồi giờ dùng cô xi đi
[tex]\sqrt{\frac{2}{3}}.\sqrt{a+b}\leq \frac{1}{3}+\frac{a+b}{2}[/tex] (1)
Tương sờ tự: [tex]\sqrt{\frac{2}{3}}.\sqrt{b+c}\leq \frac{1}{3}+\frac{b+c}{2}[/tex] (2)
[tex]\sqrt{\frac{2}{3}}.\sqrt{a+c}\leq \frac{1}{3}+\frac{a+c}{2}[/tex] (3)
Cộng (1) (2) (3) có:
[tex]A\leq \sqrt{\frac{3}{2}}.(\frac{1}{3}+\frac{a+b}{2}+\frac{1}{3}+\frac{b+c}{2}+\frac{1}{3}+\frac{a+c}{2})=\sqrt{\frac{3}{2}}(1+\frac{2(a+b+c)}{2})=\sqrt{\frac{3}{2}}.(1+1)=\sqrt{\frac{3}{2}}.2=\sqrt{\frac{3}{2}}.\sqrt{4}=\sqrt{6}[/tex]