Cmbđt

H

hoangquan_999

Last edited by a moderator:
H

hien_vuthithanh

ĐỀ : Cho a.b.c là những số thực không âm, $a^2+b^2+c^2=1$
CMR: $\dfrac{a}{b^2+c^2}+\dfrac{b}{a^2+c^2}+\dfrac{c}{a^2+b^2}$ \geq $\dfrac{3\sqrt{3}}{2}$


AD cauchy
$a^2.(1-a^2)^2$=$\dfrac{1}{2}$.$2a^2.(1-a^2).(1-a^2)$ \leq $\dfrac{1}{2}$. $(\dfrac{2a^2+1-a^2+1-a^2}{3})^3$=$\dfrac{4}{27}$
\Leftrightarrow$ a.(1-a^2)$ \leq $\dfrac{2}{3\sqrt{3}}$ \Leftrightarrow $\dfrac{1}{ a.(1-a^2)}$ \geq $\dfrac{3\sqrt{3}}{2}$\Leftrightarrow $\dfrac{a^2}{ a.(1-a^2)}$ \geq $\dfrac{3\sqrt{3}a^2}{2}$
\Leftrightarrow $\dfrac{a^2}{b^2+c^2}$\geq $\dfrac{3\sqrt{3}a^2}{2}$

TT\Rightarrow dpcm
 
Top Bottom