[tex]\frac{x^2-1}{2}=\frac{y^2-1}{3} \Rightarrow 3(x^2-1)=2(y^2-2) \Rightarrow x^2+1=2(y^2-x^2)[/tex]
Xét đồng dư với 5:
+ [tex]x^2+1 \equiv 0,1,2(mod5),2(y^2-x^2) \equiv 0,1,4(mod4)[/tex]
Nếu [tex]x^2+1 \equiv 2(y^2-x^2) \equiv 1(mod5) \Rightarrow x \vdots 5 \Rightarrow 2y^2 \equiv 1(mod5) \Rightarrow y^2 \equiv 3(mod5)[/tex](vô lí)
Vậy [tex]y^2-x^2 \vdots 5[/tex]