CM: $\dfrac{a+c}{a+b}+\dfrac{b+d}{b+c}+\dfrac{c+a}{c+d }+\dfrac{d+b}{d+a} \ge 4$

P

phuclatuithui

Last edited by a moderator:
C

cry_with_me

ADBĐT:

$\dfrac{1}{xy} ≥ \dfrac{4}{(x+y)^2}$

ta có:

$\dfrac{a}{b+c} + \dfrac{c}{d+a} = \dfrac{a^2 + ad + bc + c^2}{(b+c)(a+d)} ≥ \dfrac{4(a^2 + ad + bc + c^2}{(a+b+c+d)^2}$ (1)

tương tự:

$\dfrac{b}{c+d} + \dfrac{d}{a+b} ≥ \dfrac{4(b^2 + ab + cd + d^2}{(a+b+c+d)^2}$ (2)

cộng (1) với (2):

$\dfrac{a}{b+c} + \dfrac{c}{d+a} +\dfrac{b}{c+d} + \dfrac{d}{a+b} ≥ \dfrac{4(a^2 + b^2 + c^2 + ad + bc +ab + cd)}{(a+b+c+d)^2} = 4B$


Cần cm $4B ≥ \dfrac{1}{2}$


$\leftrightarrow 2B ≥1$

$\leftrightarrow 2(a^2 + b^2 + c^2 + ad + bc +ab + cd) ≥ (a+b+c+d)^2$

$\leftrightarrow (a-c)^2 + (b-d)^2 ≥ 0$ (luôn đúng)


Dấu ''='' xảy ra khi a=c,b=d
 
K

kakashi_hatake

Câu 1
$VT=\sum \dfrac{a^2}{ab+ac} \ge \dfrac{(a+b+c+d)^2}{ab+ac+bc+bd+cd+ca+da+db} \\ ab+bc+bd+cd+ca+da+db=ab+ac+ad+bd+bc+cd+ac+bd \le ab+ac+ad+bc+bd+cd +\dfrac{a^2+c^2}{2} +\dfrac{b^2+d^2}{2}=\dfrac{(a+b+c+d)^2}{2} \\ \rightarrow VT \ge \dfrac{(a+b+c+d)^2}{\dfrac{(a+b+c+d)^2}{2}}=2$
Đpcm, dấu đẳng thức xảy ra khi a=b=c=d

Câu 2
$VT=(a+c)(\dfrac{1}{a+b}+\dfrac{1}{c+d}) + (b+d)(\dfrac{1}{b+c}+\dfrac{1}{d+a}) \ge (a+c).\dfrac{4}{a+b+c+d} + (b+d).\dfrac{4}{a+b+c+d}=4$
Đpcm
Dấu = xảy ra khi a=b=c=d (bài này áp dụng $\dfrac{1}{a}+\dfrac{1}{b} \ge \dfrac{4}{a+b}$)
 
Top Bottom