CM: $\dfrac{1}{x^2+1} + \dfrac{1}{y^2+1} \ge \dfrac{2}{1+xy}$

B

braga

[TEX]\frac{1}{x^2+1} + \frac{1}{y^2+1} \ge \frac{2}{1+xy} \\ \Leftrightarrow \(\frac{1}{x^2+1}-\frac{1}{1+xy}\) + \(\frac{1}{y^2+1} - \frac{1}{1+xy}\) \geq 0 \\ \Leftrightarrow \frac{x(y-x)}{(1+x^2)(1+xy)}+\frac{y(x-y)}{(1+y^2)(1+xy)} \geq 0 \\ \Leftrightarrow \frac{(y-x)^2(xy-1)}{(1+x^2)(1+y^2)(1+xy)} \geq 0 [/TEX]

[TEX]Do \ xy\geq 1 \Rightarrow xy-1 \geq 0 \Rightarrow BDT \ cuoi \ cung \ dung. \\ Dau \ bang \ xay \ ra \ \Leftrightarrow x=y[/TEX]
 
Top Bottom