Cm bđt

C

congchuaanhsang

Áp dụng BĐT Cauchy cho 3 số dương ta có:

$\dfrac{1}{(x-1)^3}$+1+1\geq$\dfrac{3}{x-1}$

$\dfrac{(x-1)^3}{y^3}$+1+1\geq$\dfrac{3x-3}{y}$

$\dfrac{1}{y^3}+1+1$\geq$\dfrac{3}{y}$

\RightarrowVT+6\geq$\dfrac{3}{x-1}+\dfrac{3x-3}{y}+\dfrac{3}{y}$

\LeftrightarrowVT\geq$3(\dfrac{1}{x-1}+\dfrac{x}{y}-2)$

\LeftrightarrowVT\geq$3(\dfrac{-2(x-1)+1}{x-1}+\dfrac{x}{y})$=$3(\dfrac{3-2x}{x-1}+\dfrac{x}{y})$=VP

Vậy BĐT được cm.
 
Top Bottom