cm Bđt khó

S

sakura024

Last edited by a moderator:
C

congchuaanhsang

2, Đặt a=$\dfrac{1}{x}$ ; b=$\dfrac{1}{y}$ ; c=$\dfrac{1}{z}$\Rightarrowx,y,z>0 và xyz=1

Gọi A là vế trái của BĐT

A=$\dfrac{1}{\dfrac{1}{x^3}(\dfrac{1}{y}+\dfrac{1}{z})}$+$\dfrac{1}{\dfrac{1}{y^3}(\dfrac{1}{x}+ \dfrac{1}{z} )}$+$\dfrac{1}{\dfrac{1}{z^3}(\dfrac{1}{x}+ \dfrac{1}{y}) }$

\LeftrightarrowA=$\dfrac{x^2}{y+z}$+$\dfrac{y^2}{x+z}$+$\dfrac{z^2}{x+y}$

Áp dụng BĐT Cauchy - Schwarz

A=$\dfrac{x^2}{y+z}$+$\dfrac{y^2}{x+z}$+$\dfrac{z^2}{x+y}$\geq$\dfrac{(x+y+z)^2}{2(x+y+z)}$=$\dfrac{x+y+z}{2}$

Áp dụng BĐT Cauchy: x+y+z\geq3$\sqrt[3]{xyz}$=3\Rightarrow$\dfrac{x+y+z}{2}$\geq$\dfrac{3}{2}$

\RightarrowA\geq$\dfrac{3}{2}$

Dấu "=" xảy ra \Leftrightarrow a=b=c=1
 
C

congchuaanhsang

1, Đặt $\dfrac{a}{a+b}=x$ ; $\dfrac{b}{b+c}=y$ ; $\dfrac{c}{c+a}=z$

thì $xyz=(1-x)(1-y)(1-z)$ (*) và x,y,z $\in$ [0;1] (do a,b,c>0)

\Leftrightarrow $2xyz=1-(x+y+z)+(xy+yz+xz)$ (1)

(*) \Leftrightarrow $1=(\dfrac{1}{x}-1)(\dfrac{1}{y}-1)(\dfrac{1}{z}-1)$

\Rightarrow 1 \leq $( \dfrac{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}{3} )^3$ (Cauchy)

\Leftrightarrow 3 \leq $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-3$

\Leftrightarrow $6xyz$ \leq $xy+yz+xz$ (2)

Từ (1) và (2) suy ra

$3-3(x+y+z)+3(xy+yz+xz)$ \leq $xy+yz+xz$

\Leftrightarrow $3-3(x+y+z)+2(xy+yz+xz)$ \leq 0

\Leftrightarrow $(x+y+z)^2-3(x+y+z)+3$ \leq $x^2+y^2+z^2$

\Leftrightarrow $x^2+y^2+z^2$ \geq $(x+y+z-\dfrac{3}{2})^2+\dfrac{3}{4}$ \geq $\dfrac{3}{4}$

\Leftrightarrow VT \geq VP
 
Top Bottom