CM bất PT

L

letsmile519

Giải:

CM: \frac{ab}{c} + \frac{bc}{a} + \frac{ac}{b} \geq a + b + c \forall a,b,c > 0

Ta có [TEX]\frac{bc}{a} + \frac{ca}{b} [/TEX] \geq 2c (theo bất đẳng thức AM-GM)
[TEX]\frac{bc}{a} + \frac{ba}{c} [/TEX] \geq 2b ( '' )
[TEX]\frac{ba}{c} + \frac{ca}{b} [/TEX] \geq 2a ( '' )
\Rightarrow [TEX]2.( \frac{bc}{a} + \frac{ca}{b} + \frac{ba}{c} ) [/TEX] \geq 2 (a+b+c)
\Rightarrow [TEX] \frac{bc}{a} + \frac{ca}{b} + \frac{ba}{c} [/TEX] \geq (a+b+c)
 
V

vy000

$\dfrac{ab}c + \dfrac{bc}a \ge 2b$
$\dfrac{bc}a+\dfrac{ca}b \ge 2c$
$\dfrac{ca}b+\dfrac{ab}c \ge 2a$
...
 
Top Bottom