Ta có: [tex]\frac{1}{n\sqrt{n}}< \frac{2}{n\sqrt{n-1}+(n-1)\sqrt{n}}=\frac{2}{\sqrt{n(n-1)}(\sqrt{n}+\sqrt{n-1})}=\frac{2(\sqrt{n}-\sqrt{n-1})}{\sqrt{n(n-1)}}=\frac{2}{\sqrt{n-1}}-\frac{2}{\sqrt{n}}[/tex]
Từ đó [tex]1+\frac{1}{2\sqrt{2}}+...+\frac{1}{n\sqrt{n}}< 1+\frac{1}{2\sqrt{2}}+\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}+...+\frac{2}{\sqrt{n-1}}-\frac{2}{\sqrt{n}}< 1+\frac{1}{2\sqrt{2}}+\sqrt{2}< 2\sqrt{2}[/tex]