Làm 4a với 6b thôi...
4a)
[tex]A=\sqrt{\frac{3\sqrt{3}-4}{2\sqrt{3}+1}}-\sqrt{\frac{\sqrt{3}+4}{5-2\sqrt{3}}}= \sqrt{\frac{(3\sqrt{3}-4)(2\sqrt{3}-1)}{(2\sqrt{3})^2-1}}-\sqrt{\frac{(5+2\sqrt{3})(\sqrt{3}+4)}{5^2-(2\sqrt{3})^2}}[/tex]
$= \sqrt{\frac{22-11\sqrt{3}}{11}}-\sqrt{\frac{26+13\sqrt{3}}{13}}$
$= \sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}$
$=-\sqrt{2-\sqrt{3}+2+\sqrt{3}-2 \sqrt{(2-\sqrt{3})(2+\sqrt{3})}}$(Vì $A<0$)
$=-\sqrt{2}$
6b)
$B=\sqrt{5(4-2\sqrt{3})}+ \sqrt{5(7-4\sqrt{3})}$
$B=\sqrt{5(\sqrt{3}-1)^2}+\sqrt{5(2-\sqrt{3})^2}$
$B= (\sqrt{3}-1)\sqrt{5}+ (2-\sqrt{3})\sqrt{5}$
$B=(\sqrt{3}-1+2-\sqrt{3})\sqrt{5}=\sqrt{5}$