a) [TEX]3.2^{2^{2n}}+1 \equiv 3.2^{4^n}+1 \equiv 3.2^{3k+1}+1 \equiv 3.8^k.2+1 \equiv 3.2+1 \equiv 0(\mod 7)[/TEX]
b) [TEX]\frac{1}{3}(2^{2^{n+1}}+2^{2^n}+1) \equiv \frac{1}{3}(2^{3k+1}+2^{3k+2}+1) (\mod 7)[/TEX](do [TEX]2^n,2^{n+1}[/TEX] luôn tồn tại 1 số chia 3 dư 1 và 1 số chia 3 dư 2)
[TEX]\Rightarrow (2^{2^{n+1}}+2^{2^n}+1) \equiv (2^{3k+1}+2^{3q+2}+1) \equiv (2.8^k+8^q.4+1) \equiv 7 \equiv 0(\mod 7) [/TEX]\
Mà [TEX](3,7)=1 \Rightarrow \frac{1}{3}(2^{2^{n+1}}+2^{2^n}+1) \vdots 7[/TEX]