Toán 9 Chứng minh

Darkness Evolution

Duke of Mathematics
Thành viên
27 Tháng năm 2020
620
1,104
146
17
Vĩnh Phúc
THCS Vĩnh Yên
Cho cái gợi ý xong tự làm tiếp nhen
$\frac{1}{(n+1)\sqrt[3]{n}}=\sqrt[3]{n^2}\cdot \frac{1}{n(n+1)}=\sqrt[3]{n^2}(\frac{1}{n}-\frac{1}{n+1})$
$=\sqrt[3]{n^2}(\frac{1}{\sqrt[3]{n}}-\frac{1}{\sqrt[3]{n+1}})(\frac{1}{\sqrt[3]{n^2}}+\frac{1}{\sqrt[3]{n(n+1)}}+\frac{1}{\sqrt[3]{(n+1)^2}})$
$=(\frac{1}{\sqrt[3]{n}}-\frac{1}{\sqrt[3]{n+1}})(\frac{\sqrt[3]{n^2}}{\sqrt[3]{n^2}}+\frac{\sqrt[3]{n^2}}{\sqrt[3]{n(n+1)}}+\frac{\sqrt[3]{n^2}}{\sqrt[3]{(n+1)^2}})$
$<3(\frac{1}{\sqrt[3]{n}}-\frac{1}{\sqrt[3]{n+1}})$
 
Top Bottom