a) Ta thấy: [tex]AH.AO=AB^2[/tex]
Xét tam giác ABM và ANC:
[tex]\left.\begin{matrix} \widehat{MAB}=\widehat{BAN}\\ \widehat{ABM}=\widehat{ANB}=\frac{1}{2}sđ cungBM \end{matrix}\right\}\Rightarrow \Delta AMB\sim ABN\Rightarrow \frac{AM}{AB}=\frac{AB}{AN}\Rightarrow AB^2=AM.AN=AH.AO[/tex]
b) Ta có: [tex]DK//AB\Rightarrow \widehat{IDK}=\widehat{IAB}[/tex]
Lại có: [tex]OI\perp DE\Rightarrow \widehat{OID}=90^o[/tex] [tex]\Rightarrow \widehat{OID}=\widehat{OBA}=\widehat{OCA}=90^o\Rightarrow O,I,B,A,C[/tex] thuộc đường tròn đường kính OA.
[tex]\Rightarrow ABIC[/tex] nội tiếp [tex]\Rightarrow \widehat{BAI}=\widehat{BCI}\Rightarrow \widehat{BCI}=\widehat{IDK}[/tex]
[tex]\Rightarrow ICDK[/tex] nội tiếp [tex]\Rightarrow \widehat{DIK}=\widehat{DCK}=\widehat{DEB}\Rightarrow \widehat{DIK}=\widehat{DEB}\Rightarrow IK//BE[/tex]