[tex]\frac{3}{xy+yz+zx}+\frac{2}{x^{2}+y^{2}+z^{2}}=(\frac{1}{xy+yz+zx}+\frac{2}{x^{2}+y^{2}+z^{2}})+\frac{2}{xy+yz+zx}=2(\frac{1}{2xy+2yz+2zx}+\frac{1}{x^{2}+y^{2}+z^{2}})+\frac{2}{xy+yz+zx}[/tex]
Áp dụng BDT
[tex]\frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}[/tex] có:
[tex]2(\frac{1}{2xy+2yz+2zx}+\frac{1}{x^{2}+y^{2}+z^{2}})+\frac{2}{xy+yz+zx}\geq 2(\frac{4}{2xy+2yz+2zx+x^{2}+y^{2}+z^{2}})+\frac{2}{xy+yz+zx}[/tex]
Ta có:
[tex]3(xy+yz+zx) \leq (x+y+z)^2 = 1 \rightarrow xy+yz+zx \leq \frac{1}{3}[/tex]
Vậy : [tex]2(\frac{1}{2xy+2yz+2zx}+\frac{1}{x^{2}+y^{2}+z^{2}})+\frac{2}{xy+yz+zx}\geq 2(\frac{4}{2xy+2yz+2zx+x^{2}+y^{2}+z^{2}})+\frac{2}{xy+yz+zx}=2(\frac{4}{(x+y+z)^2})+\frac{2}{xy+yz+zx}=2.\frac{4}{1}+\frac{2}{xy+yz+zx}\geq 2.4+\frac{2}{\frac{1}{3}}=8+6=14[/tex]
Do không xảy ra dấu "=" nên ta có thể suy ra được cái đề bài