Vì :[tex]=> \frac{x^2+y^2+z^2}{3}-(\frac{x+y+z}{3})^2\geq 0 \\=> \frac{3x^2+3y^2+3z^2}{9}-\frac{x^2+y^2+z^2+2xy+2yz+2zx}{9} \\=> \frac{2x^2+2y^2+2z^2-2xy-2yz-2zx}{9}\geq 0 \\=> \frac{(x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2)}{9}\geq 0 [/tex]
$=> \frac{(x-y)^2+(y-z)^2+(z-x)^2}{9}\geq 0$ ( luôn đúng với mọi x;y;z )
Dấu"=" xảy ra khi x=y=z
=> đcpcm