$VT = \dfrac{\dfrac1{\sin^2 \dfrac{x}2} -1 - \dfrac1{\sin^2 \dfrac{3x}2} + 1}{\cos^2 \dfrac{x}2 \cos x \dfrac1{\sin^2 \dfrac{3x}2}}$
$=\dfrac{\dfrac{\sin^2 \dfrac{3x}2 - \sin^2 \dfrac{x}2}{\sin^2 \dfrac{x}2 \sin^2 \dfrac{3x}2}}{\cos^2 \dfrac{x}2 \cos x \dfrac1{\sin^2 \dfrac{3x}2}}$
$=\dfrac{\left(\sin \dfrac{3x}2 - \sin \dfrac{x}2\right)\left( \sin \dfrac{3x}2 + \sin \dfrac{x}2\right)}{\sin^2 \dfrac{x}2 \cos^2 \dfrac{x}2 \cos x}$
$= \dfrac{2 \sin \dfrac{x}2 \cos x \cdot 2 \sin x \cos \dfrac{x}2}{\dfrac12 \sin x \sin \dfrac{x}2 \cos \dfrac{x}2 \cos x}$
$= 8$