Cho a,b,c là các số dương không âm thỏa mãn [tex]a^{2}+b^{2}+c^{2}=3[/tex]
Chứng minh : [tex]\frac{a}{a^{2}+2b+3}+\frac{b}{b^{2}+2c+3}+\frac{c}{c^{2}+2a+3}\leq \frac{1}{2}[/tex]
Đặt [tex]A=\frac{a}{a^{2}+2b+3}+\frac{b}{b^{2}+2c+3}+\frac{c}{c^{2}+2a+3}[/tex]
Có: [tex]a^{2}+1\geq 2a\Rightarrow \frac{a}{a^{2}+2b+3}\leq \frac{a}{2a+2b+2}=\frac{1}{2}.\frac{a}{a+b+1}[/tex]
Tương tự:....
[tex]\Rightarrow A\leq \frac{1}{2}(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1})[/tex]
[tex]\Rightarrow \frac{3}{2}-A\geq (\frac{1}{2}-\frac{1}{2}.\frac{a}{a+b+1})+(\frac{1}{2}-\frac{1}{2}.\frac{b}{b+c+1})+(\frac{1}{2}-\frac{1}{2}.\frac{c}{c+a+1})=\frac{1}{2}(\frac{b+1}{a+b+1}+\frac{c+1}{b+c+1}+\frac{a+1}{c+a+1})[/tex]
Đặt B=[tex]\frac{b+1}{a+b+1}+\frac{c+1}{b+c+1}+\frac{a+1}{c+a+1}=\frac{(b+1)^{2}}{(b+1)(a+b+1)}+\frac{(c+1)^{2}}{(c+1)(b+c+1)}+\frac{(a+1)^{2}}{(a+1)(c+a+1)}\geq \frac{(a+b+c+3)^{2}}{(b+1)(a+b+1)+(c+1)(b+c+1)+(a+1)(c+a+1)}[/tex] (BĐT Svacxo)
Xét $(b+1)(a+b+1)+(c+1)(b+c+1)(a+1)(c+a+1)$
$=a^{2}+b^{2}+c^{2}+ab+bc+ca+3(a+b+c)+3$
$=\frac{1}{2}(a^{2}+b^{2}+c^{2}+2ab+2bc+2ca+6a+6b+6c+9)$
$=\frac{1}{2}(a+b+c+3)^{2}$
[tex]\Rightarrow B\geq \frac{(a+b+c+3)^{2}}{\frac{1}{2}.(a+b+c+3)^{2}}=2\Rightarrow \frac{3}{2}-A\geq \frac{1}{2}.B\geq \frac{1}{2}.2=1\Rightarrow A\leq \frac{1}{2}[/tex] (đpcm)