Chứng Minh

O

oack

Chứng Minh rằng :
[TEX] C_{2n}^{0} + 3^2 C_{2n}^{2} + 3^4C_{2n}^{4} + .... + 3^{2n}C_{2n}^{2n} = 2^{2n-1}(2^{2n} + 1 )[/TEX]

[TEX](3+1)^{2n}=C^{0}_{2n}+3C^1_{2n}+3^2C^2_{2n}+....+3^{2n}C^{2n}_{2n}[/TEX]

[TEX](3-1)^{2n}=C^0_{2n}-3C^1_{2n}+3^2C^2_{2n}-....+3^{2n}C^{2n}_{2n}[/TEX]

\Rightarrow [TEX]4^{2n}+2^{2n}=2.(C^0_{2n}+3^2C^2_{2n}+....+3^{2n}C^{2n}_{2n})[/TEX]

\Rightarrow [TEX]2.4^{2n-1}+2^{2n-1}=C^0_{2n}+3^2C^2_{2n}+...+3^{2n}C^{2n}_{2n}[/TEX]

\Rightarrow [TEX]2^{2n-1}(2^{2n}+1)=C^0_{2n}+3^2C^2_{2n}+...+3^{2n}C^{2n}_{2n}[/TEX]

ĐPCM
 
Top Bottom