Chứng minh

H

hien_vuthithanh

cách khác nè ............. Đây là BDT Nesbitt
VT=$(1+\dfrac{a}{b+c})+ (1+\dfrac{b}{c+a}) +(1+\dfrac{c}{a+b})$-3
=(a+b+c) $(\dfrac{1}{b+c} +\dfrac{1}{a+c} +\dfrac{1}{a+b})-3 $ \geq (a+b+c).$\dfrac{9}{2(a+b+c)}-3$= $\dfrac{3}{2}$
 
S

soccan

Vâng, hẳn là Nesbit =))
cách khác nhớ :))
$\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{b+a} \ge \dfrac{3}{2}\\
\Longleftrightarrow (\dfrac{a}{b+c}-\dfrac{1}{2})+(\dfrac{b}{a+c}-\dfrac{1}{2})+(\dfrac{c}{b+a}-\dfrac{1}{2} \ge 0 \\
\Longleftrightarrow \dfrac{a-b}{b+c}+\dfrac{a-c}{b+c}+\dfrac{b-a}{a+c}+\dfrac{c-a}{a+b}+\dfrac{c-a}{a+b} \ge 0\\
\Longleftrightarrow (a-b).\dfrac{a-b}{(b+c)(a+c)}+(a-c).\dfrac{a-c}{(b+a)(b+c)}+(b-c).\dfrac{b-c}{(a+c)(a+b)} \ge 0\\
\Longleftrightarrow \dfrac{(a-b)^2}{(b+c)(a+c)}+\dfrac{(a-c)^2}{(a+b)(b+c)}+\dfrac{(b-c)^2}{(a+c)(a+b)} \ge 0\ forever\ correct (a,b,c \ge 0) $
 
Top Bottom