Chứng minh

E

eye_smile

Từ GT chia cả 2 vế cho $abc$, đc:
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}=6$

Có: $\dfrac{1}{{a^2}}+\dfrac{1}{{b^2}} \ge \dfrac{2}{ab}$
$\dfrac{1}{{b^2}}+\dfrac{1}{{c^2}} \ge \dfrac{2}{bc}$
$\dfrac{1}{{c^2}}+\dfrac{1}{{a^2}} \ge \dfrac{2}{ca}$
$\dfrac{1}{{a^2}}+1 \ge \dfrac{2}{a}$
$\dfrac{1}{{b^2}}+1 \ge \dfrac{2}{b}$
$\dfrac{1}{{c^2}}+1 \ge \dfrac{2}{c}$

Cộng theo vế \Rightarrow đpcm
 
G

goku123123

Vì a;b;c dương nên ta có
$a+b+c+ab+bc+ac=6abc$
\Rightarrow $\frac{1}{bc}+\frac{1}{ac}+\frac{1}{ab}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=6$
\Rightarrow $\frac{1}{bc}+\frac{1}{ac}+\frac{1}{ab}=6-(\frac{1}{c}+\frac{1}{a}+\frac{1}{b})$

Đặt $A=\frac{1}{a^2}+ \frac{1}{b^2}+ \frac{1}{c^2}$ \geq $\frac{(\frac{1}{a}+ \frac{1}{b}+ \frac{1}{c})^2}{3}$
\Rightarrow $A=\frac{\frac{1}{a^2}+ \frac{1}{b^2}+ \frac{1}{c^2}+2.[6-(\frac{1}{c}+\frac{1}{a}+\frac{1}{b})]}{3}$
\Rightarrow A \geq $ \frac{9}{3} =3$
 
Top Bottom