a) Ta có: MIBK nội tiếp [tex]\Rightarrow \widehat{IKM}=\widehat{MBI}=\widehat{MBC}=\widehat{MCH}[/tex]
MICH nội tiếp [tex]\Rightarrow \widehat{MCH}=\widehat{MIH}\Rightarrow \widehat{MIH}=\widehat{MKI}[/tex]
Tương tự ta cũng có [tex]\widehat{MHI}=\widehat{MIK}\Rightarrow \Delta MIH\sim \Delta MKI\Rightarrow \frac{MI}{MH}=\frac{MK}{MI}\Rightarrow IM^2=MH.MK[/tex]
b) [tex]\widehat{BPI}=\widehat{KBM}+\widehat{BKI}=\widehat{BCM}+\widehat{BMI}=\widehat{BCM}+90^o-\widehat{IBM}=\widehat{BCM}+90^o-\widehat{MCH}=\widehat{BCM}+\widehat{CMH}=\widehat{BCM}+\widehat{CIH}=\widehat{MQI}\Rightarrow[/tex] MPIQ nội tiếp
Từ đó [tex]\widehat{MPQ}=\widehat{MIQ}=\widehat{MCH}=\widehat{MBC}\Rightarrow \widehat{MPQ}+\widehat{PMI}=\widehat{MBC}+\widehat{PMI}=90^o\Rightarrow PQ\perp MI[/tex]
c) [tex]KI=KB\Rightarrow \widehat{KIB}=\widehat{KBI}[/tex]
Mà [tex]\widehat{KBI}=\widehat{HCI},\widehat{KIB}=\widehat{KMB}=90^o-\widehat{KBM}=90^o-\widehat{BCM}=\widehat{CMI}=\widehat{CHI}\Rightarrow \widehat{HCI}=\widehat{CHI}\Rightarrow IH=IC[/tex]