chứng minh toán

R

rose23

Last edited by a moderator:
H

harrypham

a) [TEX]7^{2013}- 3^{2011} \ \vdots 10[/TEX]
[TEX]7^4 \equiv 1 \pmod{10} \Rightarrow (7^4)^{501} \equiv 1 \pmod{10} \Rightarrow (7^4)^{501}.7=7^{2013} \equiv 7 \pmod{10}[/TEX]

[TEX]3^4 \equiv 1 \pmod{1} \Rightarrow (3^4)^{502} \equiv 1 \pmod{10} \Rightarrow (3^4)^{502}.3^3=3^{2011} \equiv 3^3 \equiv 7 \pmod{10}[/TEX]

­Như vậy [TEX]7^{2013}- 3^{2011} \equiv 7-7 =0 \pmod{10}[/TEX]. Ta có đpcm.

b) Đặt [TEX](2n+1,3n+1)=d \Rightarrow 2n+1 \vdots d, \ 3n+1 \vdots d[/TEX].
[TEX]\Rightarrow 3(2n+1)-2(3n+1) \vdots d \Rightarrow 1 \vdots d[/TEX].
Vậy [TEX]d=1[/TEX]. Tức 2n+1 và 3n+1 nguyên tố cùng nhau.
 
Top Bottom