Bài 3:
Hướng dẫn
Thay [tex]\tan \alpha =\frac{\sin \alpha }{\cos \alpha };\cot \alpha =\frac{\cos \alpha }{\tan \alpha }[/tex] vào.
Bài 4:
[tex]\frac{\sin ^{2}\alpha -\cos ^{2}\alpha +\cos ^{4}\alpha }{\cos ^{2}\alpha -\sin ^{2}\alpha +\sin ^{4}\alpha }\\=\frac{\sin ^{2}\alpha +\cos ^{2}\alpha -2\cos ^{2}\alpha +\cos ^{4}\alpha}{\cos ^{2}\alpha +\sin ^{2}\alpha -2\sin ^{2}\alpha +\sin ^{4}\alpha }\\=\frac{1 -2\cos ^{2}\alpha +\cos ^{4}\alpha}{1 -2\sin ^{2}\alpha +\sin ^{4}\alpha }\\=\frac{(1-\cos ^{2}\alpha )^{2}}{(1-\sin ^{2}\alpha )^{2}}\\=\frac{(\sin ^{2}\alpha )^{2}}{(\cos ^{2}\alpha )^{2}}\\=\tan ^{4}\alpha (dpcm)[/tex]
Bài 5:
[tex]P=3\sin ^{2}\alpha -5\cos =3(\sin ^{2}\alpha +\cos ^{2}\alpha )-3\cos ^{2}\alpha -5\cos =3-3.\frac{1}{3^{2}}-5.\frac{1}{3}=1[/tex]