Toán 9 Chứng minh [tex]b^2\geq 4ac+4ad[/tex] với các điều kiện của [tex]a;b;c;d[/tex]

Junery N

Cựu Hỗ trợ viên
HV CLB Địa lí
Thành viên
23 Tháng mười một 2019
4,605
12,668
996
Nam Định
In the sky

kido2006

Cựu TMod Toán
Thành viên
26 Tháng một 2018
1,693
2
2,652
401
Bắc Ninh
THPT Chuyên Bắc Ninh
Cho [tex]4[/tex] số thực [tex]a;b;c;d[/tex] thỏa mãn các điều kiện: [tex]a\neq 0[/tex] và [tex]4a+2b+c+d=0[/tex].
Chứng minh: [tex]b^2\geq 4ac+4ad[/tex]
:meomun19
từ [tex]4a+2b+c+d=0\Rightarrow b^2 = \frac{(4a+c+d)^2}{4}[/tex]
Vì [tex](4a - c + d)^2\geq 0\Rightarrow ...\Rightarrow (4a+c+d)^2 \geq 16ac+16ad\Rightarrow b^2 \geq 4ac+4ad[/tex]
 
Top Bottom