[tex]\frac{a^3 +b^3+c^3}{abc} + \frac{2r}{R} =4\Leftrightarrow \frac{a^3+b^3+c^3}{abc}+\frac{\frac{2S}{p}}{\frac{abc}{4S}}=4\Leftrightarrow \frac{a^3+b^3+c^3}{abc}+\frac{8S^2}{p.abc}=4\Leftrightarrow p.(a^3+b^3+c^3)+8S^2=4pabc\Leftrightarrow (a+b+c)(a^3+b^3+c^3)+16S^2=4(a+b+c)abc\Leftrightarrow (a+b+c)(a^3+b^3+c^3)+(a+b+c)(a+b-c)(b+c-a)(c+a-b)=4(a+b+c)abc\Leftrightarrow a^3+b^3+c^3+(a+b-c)(b+c-a)(c+a-b)=4abc[/tex]
Đặt [tex]x=a+b+c,q=ab+bc+ca,r=abc\Rightarrow a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)=x^3-3[(a+b+c)(ab+bc+ca)-abc]=x^3-3(pq-r)=x^3-3pq+3r[/tex]
Lại có: [tex](a+b-c)(b+c-a)(c+a-b)=(x-2a)(x-2b)(x-2c)=x^3-2x^2(a+b+c)+4x(ab+bc+ca)-8abc=x^3-2x^2+4xq-8r=-x^3+4xq-8r[/tex]
[tex]a^3+b^3+c^3+(a+b-c)(b+c-a)(c+a-b)=4abc\Rightarrow x^3-3xq+3r+(-x^3)+4xq-8r=4r\Leftrightarrow xq=9r\Leftrightarrow (a+b+c)(ab+bc+ca)=9abc[/tex]
Mà theo BĐT Cauchy ta có: [tex]a+b+c\geq 3\sqrt[3]{abc},ab+bc+ca\geq 3\sqrt[3]{a^2b^2c^2}\Rightarrow (a+b+c)(ab+bc+ca)\geq 9abc[/tex]
Dấu "=" xảy ra khi a = b = c hay ABC đều.