Chứng minh rằng :

N

niemkieuloveahbu

Với mọi x và với k là số nguyên dương,ta có:

[TEX](1+x)^k=C^0_k+C^1_kx+C^2_kx^2+...+C^k_kx^k\\ \Leftrightarrow C^k_n(1+x)^k=C^0_kC^k_n+C^1_kC^k_nx+C^2_kC^k_nx^2+...+C^k_k.C^k_nx^k(1)\\ Ta\ co:\\C^m_k.C^k_n=\frac{k!}{m!(k-m)!}.\frac{n!}{k!(n-k)!}=\frac{n!}{m!(n-m)!}.\frac{(n-m)!}{(k-m)!(n-k)!}=C^m_n.C^{k-m}_{n-m}\\\Rightarrow (1) :\\ C^k_n(1+x)^k=C^0_nC^k_n+C^1_nC^{k-1}_{n-1}x+C^2_n.C^{k-2}_{n-2}x^2+...+C^k_n.C^{n-k}_0x^k(2)\\ Thay\ x=-1\ vao\ (2)\ duoc:\\ C^0_n.C^k_n-C^1_n.C^{k-1}_{n-1}+C^2_n.C^{k-2}_{n-2}-...+(-1)^kC^k_n.C^{n-k}_0=0\\ \Rightarrow dpcm[/TEX]
 
Last edited by a moderator:
Top Bottom