chứng minh (quy nạp)

N

newstarinsky

Khi $n=1$ ta có $\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{13}{12}>1$ (đúng)
Giả sử BDT đúng khi $n=k$ tức là
$A_k=\dfrac{1}{k+1}+\dfrac{1}{k+2}+.....+\dfrac{1}{3k+1}>1$

Ta phải CM BDT cũng đúng khi $n=k+1$ tức là
$A_{k+1}=\dfrac{1}{k+2}+\dfrac{1}{k+3}+.........+
\dfrac{1}{3k+4}>1$

Thật vậy
$\dfrac{1}{k+2}+\dfrac{1}{k+3}+......+\dfrac{1}{3k+4}\\
=\dfrac{1}{k+1}+\dfrac{1}{k+2}+\dfrac{1}{k+3}+
\dfrac{k+4}+......+\dfrac{1}{3k+1}+\dfrac{1}{3k+2}+\dfrac{1}{3k+3}+\dfrac{1}{3k+4}-\dfrac{1}{k+1}\\
=[\dfrac{1}{k+1}+\dfrac{1}{k+2}+\dfrac{1}{k+3}+....+\dfrac{1}{3k+1}]+\dfrac{2}{3(k+1)(3k+2)(3k+4)}\\
=A_k+\dfrac{2}{3(k+1)(3k+2)(3k+4)}>1$
Vậy BDT đúng với $n=k+1$
Vây BDT đã cho đúng vơi mọi n nguyên dương
 
Last edited by a moderator:
Top Bottom