Cho [tex]a,b,c>0[/tex].
Chứng minh rằng: [tex]\frac{a}{2a+b+c}+\frac{b}{2b+c+a}+\frac{c}{2c+a+b}\leq \frac{3}{4}[/tex]
Thanks
[tex]\frac{a}{2a+b+c}+\frac{b}{2b+c+a}+\frac{c}{2c+a+b}\\\\ =\frac{\frac{3a}{a+b+c}}{\frac{2.3a}{a+b+c}+\frac{3b}{a+b+c}+\frac{3c}{a+b+c}}+\frac{\frac{3b}{a+b+c}}{\frac{2.3b}{a+b+c}+\frac{3c}{a+b+c}+\frac{3a}{a+b+c}}+\frac{\frac{3c}{a+b+c}}{\frac{2.3c}{a+b+c}+\frac{3a}{a+b+c}+\frac{3b}{a+b+c}}[/tex]
đặt [tex]\frac{3a}{a+b+c}=x\\\\ \frac{3b}{a+b+c}=y\\\\ \frac{3c}{a+b+c}=z\\\\ => x+y+z=3[/tex]
bất đẳng thức cần chứng minh tương đương:
[tex]\frac{x}{x+3}+\frac{y}{y+3}+\frac{z}{z+3}\leq \frac{3}{4}\\\\ +, \frac{x}{x+3}=1-\frac{3}{x+3}\\\\ => VT=3-3.(\frac{1}{x+3}+\frac{1}{y+3}+\frac{1}{z+3})\\\\ +,\frac{1}{x+3}+\frac{1}{y+3}+\frac{1}{z+3}\geq \frac{(1+1+1)^2}{x+y+z+9}=\frac{9}{12}=\frac{3}{4}\\\\ => VT\leq 3-\frac{9}{4}=\frac{3}{4}[/tex]
dấu "=" <=> a=b=c