Cho [tex]x,y,z>0[/tex] và [tex]x+y+z=30[/tex]. Chứng minh rằng:
a. [tex]\frac{x^4+y^4}{x^3+y^3}\geq \frac{1}{2}(x+y)[/tex]
b. [tex]\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\geq 30[/tex]
Thanks
a) $x^{2}+y^{2} \geq 2xy$
=>$(x^{2}+y^{2})^{2} \geq 2xy(x^{2}+y^{2})$
=> $2(x^{4}+y^{4}) \geq 2xy(x^{2}+y^{2})$ (Do $2(x^{4}+y^{4}) \geq (x^{2}+y^{2})^{2}$ )
=> $(x^{4}+y^{4}) \geq x^{3}y+xy^{3}$
=> $2(x^{4}+y^{4} \geq x^{3}y+xy^{3}+x^{4}+y^{4} = (x+y)(x^{3}+y^{3})$
=> $\frac{x^4+y^4}{x^3+y^3}\geq \frac{1}{2}(x+y)$
Cho [tex]x,y,z>0[/tex] và [tex]x+y+z=30[/tex]. Chứng minh rằng:
a. [tex]\frac{x^4+y^4}{x^3+y^3}\geq \frac{1}{2}(x+y)[/tex]
b. [tex]\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\geq 30[/tex]
Thanks
b) Từ câu a ta có:
$\frac{x^4+y^4}{x^3+y^3}\geq \frac{1}{2}(x+y)$
$\frac{y^4+z^4}{y^3+z^3}\geq \frac{1}{2}(y+z)$
$\frac{x^4+z^4}{z^3+x^3}\geq \frac{1}{2}(z+x)$
=> $\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\geq \frac{1}{2}(x+y+y+z+z+x) =\frac{1}{2}.2.(x+y+z)=x+y+z$
Mà x+y+z=30
=> $\frac{x^{4}+y^{4}}{x^{3}+y^{3}}+\frac{y^{4}+z^{4}}{y^{3}+z^{3}}+\frac{z^{4}+x^{4}}{z^{3}+x^{3}} \geq 30$