Ta có: [tex]\widehat{PON}+\widehat{NOH}+\widehat{HOB}+\widehat{BOK}+\widehat{KOM}+\widehat{MOQ}=180^o[/tex]
Mà [tex]\widehat{PON}=\widehat{QOM},\widehat{NOH}=\widehat{HOB},\widehat{BOK}=\widehat{KOM}\Rightarrow 2(\widehat{PON}+\widehat{NOH}+\widehat{BOK})=180^o\Rightarrow\widehat{PON}+\widehat{NOH}+\widehat{BOK}=90^o\Rightarrow \widehat{POH}+\widehat{BOK}=90^o\Rightarrow \widehat{POH}=90^o-\widehat{BOK}=\widehat{BKO}=\widehat{OKQ}[/tex]
Từ đó chứng minh được [tex]\Delta POH\sim \Delta QKO\Rightarrow \frac{PO}{PH}=\frac{QK}{QO}\Rightarrow HP.KQ=PO.OQ=\frac{PQ^2}{4}\Rightarrow HP+KQ\geq 2\sqrt{HP.KQ}=PQ[/tex]