Giải:
Theo đề, vì a,b,c>0 nên ta có:
$\frac{a^8+b^8+c^8}{a^3b^3c^3}$=$\frac{a^5}{b^3c^3}$+$\frac{b^5}{a^3c^3}$+$\frac{c^5}{a^3b^3}$
Áp dụng BĐT Cô-si cho 2 số dương $\frac{a^5}{b^3c^3}$ và $\frac{b^5}{a^3c^3}$, ta có:
$\frac{a^5}{b^3c^3}$+$\frac{b^5}{a^3c^3}$ \geq2$\sqrt{\frac{a^5b^5}{b^3c^3a^3c^3}}$=$\frac{2ab}{c^3}$ (1)
Tương tự, ta có:
$\frac{b^5}{a^3c^3}$+$\frac{c^5}{a^3b^3}$\geq $\frac{2bc}{a^3}$ (2); $\frac{a^5}{b^3c^3}$+$\frac{c^5}{a^3b^3}$\geq $\frac{2ac}{b^3}$ (3)
Cộng (1),(2),(3) vế theo vế, ta có: $\frac{a^5}{b^3c^3}$+$\frac{b^5}{a^3c^3}$+$\frac{c^5}{a^3b^3}$\geq$\frac{ab}{c^3}$+$\frac{bc}{a^3}$+$\frac{ac}{b^3}$ (4)
Áp dụng BĐT Cô-si, ta có:
$\frac{ab}{c^3}$+$\frac{bc}{a^3}$\geq $\frac{2b}{ac}$
$\frac{bc}{a^3}$+$\frac{ac}{b^3}$\geq $\frac{2c}{ab}$
$\frac{ab}{c^3}$+$\frac{ac}{b^3}$\geq $\frac{2a}{bc}$
\Rightarrow $\frac{ab}{c^3}$+$\frac{bc}{a^3}$+$\frac{ac}{b^3}$\geq $\frac{b}{ac}$+$\frac{c}{ab}$+$\frac{a}{bc}$ (5)
Áp dụng BĐT Cô-si, ta có:
$\frac{a}{bc}$+$\frac{b}{ac}$\geq $\frac{2}{c}$
$\frac{b}{ac}$+$\frac{c}{ab}$\geq $\frac{2}{a}$
$\frac{c}{ab}$+$\frac{a}{bc}$\geq $\frac{2}{b}$
\Rightarrow $\frac{a}{bc}$+$\frac{b}{ac}$+$\frac{c}{ab}$\geq $\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$ (6)
Từ (4),(5),(6)\Rightarrow $\frac{a^5}{b^3c^3}$+$\frac{b^5}{a^3c^3}$+$\frac{c^5}{a^3b^3}$\geq $\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$
Hay $\frac{a^8+b^8+c^8}{a^3b^3c^3}$\geq $\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$
Dấu "=" xảy ra \Leftrightarrow a=b=c