VT=[tex]tan^2x+cot^2x=\frac{sin^2x}{cos^2x}+\frac{cos^2x}{sin^2x}=\frac{sin^4x+cos^4x}{sin^2x.cos^2x}=\frac{(sin^2x+cos^2x)^2}{sin^2x.cos^2x}-2[/tex]
=[tex]\frac{1}{sin^2x.cos^2x}-2[/tex]
thêm bớt 2 vào VP
VP=[tex]\frac{6+2cos4x}{1-cos4x}=\frac{6+2cos4x+2-2cos4x}{1-cos4x}-2 =\frac{8}{1-cos4x}-2[/tex]
Ta chứng minh :
[tex]\frac{1}{sin^2x.cos^2x}=\frac{8}{1-cos4x}[/tex]
<=>[tex]1-cos4x=2.(2sinx.cosx)^2[/tex] (nhân chéo)
<=>1-(1-2[tex]sin^22x[/tex])=2[tex]sin^22x[/tex]
<=>2[tex]sin^22x[/tex]=2[tex]sin^22x[/tex] (hiển nhiên)