[tex]\dfrac{\left(\dfrac{√x}{√x\ +2}+\dfrac{√x}{√x\ -2}\right)}{\dfrac{√x}{x-4}}[/tex]
Đặt $A=\dfrac{\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}}{\dfrac{\sqrt{x}}{x-4}}$$.$ Điều kiện xác định $:$ $\left\{\begin{matrix} x \geq 0 & \\ x \neq 4 & \end{matrix}\right.$
$A=\dfrac{\dfrac{\sqrt{x}(\sqrt{x}-2)+\sqrt{x}(\sqrt{x}+2)}{(\sqrt{x}+2)(\sqrt{x}-2)}}{\dfrac{\sqrt{x}}{x-4}}=\dfrac{\dfrac{x-2\sqrt{x}+x+2\sqrt{x}}{\sqrt{x}^{2}-2^{2}}}{\dfrac{\sqrt{x}}{x-4}}=\dfrac{\dfrac{2x}{x-4}}{\dfrac{\sqrt{x}}{x-4}}
\\ = \dfrac{2x}{x-4} \div \dfrac{\sqrt{x}}{x-4}= \dfrac{2x}{x-4}. \dfrac{x-4}{\sqrt{x}}=\dfrac{2x(x-4)}{(x-4)\sqrt{x}}= \dfrac{2x}{\sqrt{x}}= \dfrac{2\sqrt{x}.\sqrt{x}}{\sqrt{x}}= 2\sqrt{x}$
Vậy $A= 2\sqrt{x}$ khi $\left\{\begin{matrix} x \geq 0 & \\ x \neq 4 & \end{matrix}\right.$