Hế hế, mình phục mình ghê hớ hớ
$\dfrac{sin^4x + 2cosxsinx - cos^4x}{tan2x - 1} = cos2x$
Tử:
$sin^4x + 2cosxsinx - cos^4x = (sin^4x - cos^4x) + 2cosxsinx$
$ = (sin^2x - cos^2x) + 2cosxsinx$
$ = -(cos^2x - sin^2x) + 2cosxsinx$
$ = -2cosx^2 + 1 + 2cosxsinx$ (1)
Mẫu:
$tan2x - 1 = \dfrac{sin2x}{cos2x} - 1$
$ = \dfrac{2cosx.sinx}{2cos^2x - 1} - 1$
$= \dfrac{2cosxsinx - 2cos^2x + 1}{2cos^2x - 1}$ (2)
Từ (1),(2) ta có:
$\dfrac{sin^4x + 2cosxsinx - cos^4x}{tan2x - 1} = \dfrac{-2cosx^2 + 1 + 2cosxsinx}{ \dfrac{2cosxsinx - 2cos^2x + 1}{2cos^2x - 1}} = cos2x$ (đpcm)
keke là kaka =))