Xử lí VP: Đặt [tex]x=\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\Rightarrow x^3=\sqrt{5}+2-\sqrt{5}+2-3\sqrt[3]{(\sqrt{5}+2)(\sqrt{5}-2)}(\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2})=4-3x\Rightarrow x^3+3x-4=0\Rightarrow (x-1)(x^2+x+4)=0\Rightarrow x=1\Rightarrow VP=1[/tex]
Xử lí VT: Đặt [tex]\sqrt{3}=x,\sqrt[3]{2}=y\Rightarrow VT=\frac{\sqrt{(\frac{x^4-y^3x}{x-y}+x^2y).x}}{x^2+xy}=\frac{\sqrt{x^2(\frac{x^3-y^3}{x-y}+xy)}}{x(x+y)}=\frac{x\sqrt{x^2+2xy+y^2}}{x(x+y)}=\frac{\sqrt{(x+y)^2}}{x+y}=\frac{|x+y|}{x+y}=1[/tex](vì x,y > 0)
Vậy [TEX]VT=VP=1[/TEX]