Do 0 < a < 45 => 0 < 2a < 90
1 + cot²2a = 1/sin²2a
can(1 + cot²2a) = 1/sin2a
=> VP = cos2a/sin2a + 1/sin2a = (2cos²a - 1 + 1)/sin2a
= 2cos²a/(2sinacosa) = cosa/sina = cota = VT
Ta có :
cot15* = cot30* + can(1 + cot²30*) = √3 + √(1 + 3) = 2 + √3
cot(7*30') = cot15* + √(1 + cot²15*) = 2 + √3 + √(1 + 4 + 4√3 + 3)
= 2 + √3 + √[2(4 + 2√3)] = 2 + √3 + (√3 + 1)√2
= √6 + √3 + √2 + 2
= √6 + √4 + √3 + √2
cos36* = 1 - 2sin²18* = 1 - 2cos²72 = 1 - 2(2cos²36* - 1)²
Đặt t = cos36* (0 < t < 1)
=> t = 1 - 2(2t² - 1)²
<=> t = 1 - 8t⁴ + 8t² - 2
<=> t + 1 = - 8t²(t² - 1)
<=> (t + 1)(1 + 8t²(t - 1)) = 0
<=> 8t³ - 8t² + 1 = 0
<=> (2t - 1)(4t² - 2t - 1) = 0
<=> 4t² - 2t - 1 = 0 (do t # 1/2)
D' = 1 + 4 = 5
=> t = (1 + √5)/4 (do t > 0)
=> 4cos36* = 1 + √5 (dpcm)