Chứng minh BPT

N

ngomaithuy93

Cho các số nguyên dương x, y, z thoả mãn xyz=1
CMR: [TEX]\frac{\sqrt{1+x^3+y^3}}{xy}+\frac{\sqrt{1+y^3+z^3}}{yz}+\frac{\sqrt{1+z^3+x^3}}{zx} \geq 3\sqrt{3}[/TEX]
[TEX]\frac{\sqrt{1+x^3+y^3}}{xy} \geq \frac{\sqrt{xyz+2xy\sqrt{xy}}}{xy}=\frac{\sqrt{xy(z+2 \sqrt {xy})}}{xy}=\sqrt{z^2+2z\sqrt{xy}} \geq z\sqrt{3z}[/TEX]
[TEX] \Rightarrow \frac{\sqrt{1+x^3+y^3}}{xy}+\frac{\sqrt{1+y^3+z^3}}{yz}+\frac{\sqrt{1+z^3+x^3}}{zx} \geq x\sqrt{3x}+y\sqrt{3y}+z\sqrt{3z} \geq 3\sqrt[3]{xyz\sqrt{27xyz}}=3\sqrt{3}[/TEX]
"=" \Leftrightarrow x=y=z=1
 
Top Bottom