1. Theo nguyên lý Dirichlet, giả sử [tex](b^2-1)(c^2-1) \geq 0\Rightarrow b^2c^2+1\geq b^2+c^2\Rightarrow b^2c^2+2b^2+2c^2+4 \geq 3b^2+3c^2+3[/tex]
[tex]\Rightarrow (b^2+2)(c^2+2) \geq 3(b^2+c^2+1)[/tex]
[tex]\Rightarrow (a^2+2)(b^2+2)(c^2+2)\geq (a^2+2)3(b^2+c^2+1)=3(a^2+1+1)(1+b^2+c^2) \geq 3(a+b+c)^2 \geq 9(ab+bc+ca)[/tex]
2.
[tex]\sum \dfrac{bc}{a^2(b+c)}=\sum \dfrac{\dfrac{1}{a^2}}{\dfrac{1}{b}+\dfrac{1}{c}} \geq \dfrac{\left ( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right )^2}{2\left ( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right )}=VP[/tex]