chứng minh BĐT

T

trantien.hocmai

$\text{ta có} \\
P=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}
=\frac{a^2}{ab+ac}+\frac{b^2}{bc+bd}+\frac{c^2}{cd+ac}+\frac{d^2}{ad+bd} \\
\text{áp dụng bất đẳng thức Cauchy-Schwars ta có} \\
P \ge \frac{(a+b+c+d)^2}{ab+bc+cd+da+2ac+2bd} \\
\text{ta cần chứng minh } (ab+bc+cd+da+2ac+2bd) \le 2(a+b+c+d)^2 \\
\leftrightarrow a^2+b^2+c^2+d^2 \ge 2ac+2bd \\
\leftrightarrow (a-c)^2+(b-d)^2 \ge 0 \text{ luôn đúng} \\
\text{phần còn lại tự giải quyết nhá}$
 
Last edited by a moderator:
S

su10112000a

cách khác:
đặt:
$$A=\dfrac{a}{b+c} + \dfrac{b}{c+d} + \dfrac{c}{d+a} + \dfrac{d}{a+b}$$
$$B=\dfrac{b}{b+c} + \dfrac{c}{c+d} + \dfrac{d}{d+a} + \dfrac{a}{a+b}$$
$$C=\dfrac{c}{b+c} + \dfrac{d}{c+d} + \dfrac{a}{d+a} + \dfrac{b}{a+b}$$
ta có $B+C=4$
mặt khác:
$A+B=\dfrac{a+b}{b+c} + \dfrac{b+c}{c+d} + \dfrac{c+d}{d+a} + \dfrac{d+a}{a+b} \ge 4\sqrt[4]{\dfrac{(a+b)(b+c)(c+d)(d+a)}{(a+b)(b+c)(c+d)(d+a)}} = 4$
$A+C=\dfrac{a+c}{b+c} + \dfrac{a+c}{d+a} + \dfrac{b+d}{c+d} + \dfrac{b+d}{a+b} \ge \dfrac{4(a+c)}{a+b+c+d} + \dfrac{4(b+d)}{a+b+c+d} = 4$
suy ra:
$$B+C+2A \ge 8$$
mà $B+C=4$ nên:
$$A \ge 2$$
$\Longrightarrow \mathfrak{dpcm}$
 
Top Bottom