chứng minh BĐT

E

eye_smile

Đặt A là VT
Ta có: $A$ \leq $\dfrac{a}{2(a+b+1)}+\dfrac{b}{2(b+c+1)}+\dfrac{c}{2(c+a+1)}$
Đặt B là VP của BĐT trên
Cần c/m: $B$ \leq $\dfrac{1}{2}$
\Leftrightarrow $\dfrac{a}{a+b+1}+\dfrac{b}{b+c+1}+\dfrac{c}{c+a+1}$ \leq $1$
\Leftrightarrow $\dfrac{b+1}{a+b+1}+\dfrac{c+1}{b+c+1}+\dfrac{a+1}{c+a+1}$ \geq 2
\Leftrightarrow $\dfrac{{(b+1)^2}}{(b+1)(a+b+1)}+\dfrac{{(c+1)^2}}{(c+1)(b+c+1)}+\dfrac{{(a+1)^2}}{(a+1)(c+a+1)}$ \geq 2
(luôn đúng theo Schwarz)
\Rightarrow đpcm
 
C

congchuaanhsang

cho a,b,c dương thoả mãn $a^2+b^2+c^2$=3
chứng minh:
$\dfrac{a}{a^2+2b+3}$+$\dfrac{b}{b^2+2c+3}$+ $\dfrac {c} {c^2+2a+3}$ \leq $\dfrac{1}{2}$

Ta có: $a^2+2b+3=a^2+2b+1+2$ \geq $2(a+b+1)$

Tương tự ta được:

$VT$ \leq $\dfrac{1}{2}(\dfrac{a}{a+b+1}+\dfrac{b}{b+c+1} + \dfrac{c}{c+a+1)}$

Ta sẽ cm $\dfrac{a}{a+b+1}+\dfrac{b}{b+c+1}+\dfrac{c}{c+a+1}$ \leq 1

\Leftrightarrow $\dfrac{-b-1}{a+b+1}+\dfrac{-c-1}{b+c+1}+\dfrac{-a-1}{c+a+1}$ \leq -2

\Leftrightarrow $\dfrac{b+1}{a+b+1}+\dfrac{c+1}{b+c+1}+\dfrac{a+1}{c+a+1}$ \geq 2

\Leftrightarrow $\dfrac{(b+1)^2}{(b+1)(a+b+1)}+\dfrac{(c+1)^2}{(c+1)(b+c+1)}+\dfrac{(a+1)^2}{(a+1)(c+a+1)}$ \geq 2 (*)

Theo Cauchy-Schwarz:

VT(*) \geq $\dfrac{(a+b+c+3)^2}{a^2+b^2+c^2+ab+bc+ca+3(a+b+c)+3}$

Mà $a^2+b^2+c^2+ab+bc+ca+3(a+b+c)+3=\dfrac{1}{2}[a^2+b^2+c^2+2(ab+bc+ca)+6(a+b+c)+9]$

=$\dfrac{1}{2}(a+b+c+3)^2$

\Rightarrow VT(*) \geq $2$=VP(*)

Vậy bđt được cm

 
Top Bottom