Chứng minh BĐT

S

soicon_boy_9x

Áp dụng bất đẳng thức Cauchy-Schwarz ta có:

$\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}= \dfrac{ a^4 }{ ab } +\dfrac{b^4}
{bc}+\dfrac{c^4}{ac} \geq \dfrac{(a^2+b^2+c^2)^2}{ab+bc+ca} \geq a^2+b^2+c^2$

Áp dụng bất đẳng thức Cauchy ta có $a^2+b^2+c^2= (3\dfrac{a^2}{4}+\dfrac{b^2}
{4})+(3\dfrac{b^2}{4}+\dfrac{c^2}{4})+(3\dfrac{c^2}{4}+\dfrac{a^2}{4}) \geq a\sqrt{ab}+b\sqrt{bc}+c\sqrt{ca}$(đây là Cauchy 4 số nhé)
 
C

congchuaanhsang

Cách khác:

Áp dụng Cauchy 2 số ta có:

$\dfrac{a^3}{b}+bc$ \geq $2a\sqrt{ac}$ ; $\dfrac{a^3}{b}+ab$ \geq $2a^2$

$\dfrac{b^3}{c}+ca$ \geq $2b\sqrt{ba}$ ; $\dfrac{b^3}{c}+bc$ \geq $2b^2$

$\dfrac{c^3}{a}+ab$ \geq $2c\sqrt{cb}$ ; $\dfrac{c^3}{a}+ca$ \geq $2c^2$

Do đó:

$2(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca)$ \geq

$2(a^2+b^2+c^2+a\sqrt{ac}+b\sqrt{ba}+c\sqrt{cb})$

Mà $2(ab+bc+ca)$ \leq $2(a^2+b^2+c^2)$

\Rightarrow $\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}$ \geq

$a\sqrt{ac}+b\sqrt{ba}+c\sqrt{cb}$
 
Top Bottom