Chứng minh BĐT

S

student_261295

AD Bunhia ta có:
[TEX]x+\frac{9}{x} \leq \sqrt{82}sqrt{x^2+\frac{1}{x^2}}[/TEX]
CMtt ta được
[TEX]VT \geq \frac{1}{\sqrt{82}}(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z})[/TEX]
Mặt khác [TEX]x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}= 81x+81y+81z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}-80(x+y+z)[/TEX]
[TEX]81x+81y+81z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\geq 162[/TEX]
Vậy[TEX] VT \geq \frac{162-80}{\sqrt{82}}[/TEX]
=> [TEX]VT\geq \sqrt{82}[/TEX]
 
S

son9701

Cho x+y+z=1,x,y,z > 0
CM [TEX]\sqrt{x^2+\frac{1}{x^2}} + \sqrt{y^2+\frac{1}{y^2}} + \sqrt{z^2+\frac{1}{z^2}} \geq \sqrt{82} [/TEX]

Cách khác: Áp dụng bất đẳng thức Mincốpxki ta có:
[TEX]\sqrt{x^2+\frac{1}{x^2}} + \sqrt{y^2+\frac{1}{y^2}} + \sqrt{z^2+\frac{1}{z^2}} \geq \sqrt{(x+y+z)^2+(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2}=\sqrt{1+(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2}[/TEX]
Mặt khác:
Áp dụng bất đẳng thức :
[TEX]\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}=9[/TEX]
[TEX]\Rightarrow \sqrt{x^2+\frac{1}{x^2}} + \sqrt{y^2+\frac{1}{y^2}} + \sqrt{z^2+\frac{1}{z^2}} \geq \sqrt{1+9^2}=\sqrt{1+81}=\sqrt{82}[/TEX](đpcm)
 
Top Bottom