Chứng minh bdt

P

phamduyquoc0906

Chứng minh rằng với mọi [TEX]\alpha[/TEX]
[tex]\sqrt{17} \leq \sqrt{cos^2 \alpha+4cos\alpha+6}+\sqrt{cos^2\alpha-2cos\alpha+1} \leq \sqrt{11}+\sqrt{2}[/tex]
[TEX]f(\alpha)=\sqrt{cos^2 \alpha+4cos\alpha+6}+\sqrt{cos^2\alpha-2cos\alpha+1}\ \ \ \ \alpha\in{R[/TEX]
[TEX]f(\alpha)=\sqrt{(cos\alpha-1)^2+6(cos\alpha-1)+11}-(cos\alpha-1)[/TEX]
[TEX]x=cos\alpha-1\Rightarrow{f(\alpha)=g(x)=\sqrt{x^2+6x+11}-x\ \ \ \ x\in{[-2,0][/TEX]
[TEX]g^'(x)=\frac{x+3}{\sqrt{(x+3)^2+2}}-1<0\ \ \ \forall{x\in{[-2,0]}[/TEX][TEX]\Rightarrow{g(x) :NB[/TEX]
[TEX]\Rightarrow{g(0)\le{g(x)\le{g(-2)\Leftrightarrow{\sqrt{11}\le{g(x)\le{2+\sqrt3[/TEX]

[tex]\sqrt{11} \leq \sqrt{cos^2 \alpha+4cos\alpha+6}+\sqrt{cos^2\alpha-2cos\alpha+1} \leq 2+\sqrt3[/tex]

Đề không hợp lý nhỉ?
 
Top Bottom